$r_{0}=1+1.00002223 x+.50000271 x^{2}+.16648913 x^{3}+.04164497 x^{4}$

$$
\begin{array}{r}
+.00868659 x^{5}+.00143229 x^{6} \\
\left|p(x)-r_{0}\right|=\left|q_{0}\right| \cdot\left|T_{7}(x)\right| \leqq 3.61 \times 10^{-6} \quad(-1 \leqq x \leqq 1)
\end{array}
$$

Therefore $\left|f(x)-r_{0}\right| \leqq 3.91 \times 10^{-6}(-1 \leqq x \leqq 1)$. Dividing $T_{7}(x)$ by r_{0}, $q_{1}=-270,998.81+44,683.688 x$.
$r_{1}=270,998.81+226,314.15 x+90,815,458 x^{2}+22,832.391 x^{3}$

$$
+3,846.3890 x^{4}+381.2048 x^{5}
$$

$a_{0}=1 ; b_{0}=-q_{0}$
$a_{1}=-q_{1} ; b_{1}=1+q_{1} q_{0}$
Therefore

$$
p(x)=\frac{r_{1}}{a_{1}}-\frac{b_{1}}{a_{1}} T_{7}=-\frac{r_{1}}{q_{1}}+\frac{1+q_{1} q_{0}}{q_{1}} T_{7}(x) .
$$

The second term on the right is

$$
\frac{.13940940+.036886598 x+.0056281054 x^{2}+.0019269840 x^{3}}{-270,998.81+44,683.688 x} T_{7}(x)
$$

whose absolute value is bounded by 8.121×10^{-7} for $-1 \leqq x \leqq 1$. Thus e^{x} may be approximated on this interval by

$$
-\frac{r_{1}}{q_{1}}=\frac{\begin{array}{c}
1+.83511123 x+.33511386 x^{2}+.08425274 x^{3} \\
+.01419338 x^{4}+.00140667 x^{5}
\end{array}}{1-.16488518 x}
$$

where the error is bounded by $\pm\left(3 \times 10^{-7}+8.1 \times 10^{-7}\right)= \pm 1.1 \times 10^{-6}$.
Armour Research Foundation
Illinois Institute of Technology
Chicago 16, Illinois

1. C. Hastings, Approximations for Digital Computers, Princeton, 1955, p. 47-64.
2. F. B. Hildebrand, Introduction to Numerical Analysis, McGraw-Hill Book Co., New York, 1956, p. 389-395.
3. NBS Applied Mathematics Series, 9, Tables of Chebyshev Polynomials $S_{n}(x)$ and $C_{n}(x)$, U. S. Govt. Printing Office, Washington, D. C., 1952, p. 16-18.

The Complete Factorization of $\mathbf{2}^{132}+\mathbf{1}$

By K. R. Isemanger

The integer $2^{132}+1$ is divisible by $2^{44}+1=17 \cdot 353 \cdot 2931542417$ and the quotient, $2^{88}-2^{44}+1$, is divisible by $241 \cdot 7393$. There remains the formidable problem of factoring the resultant quotient N, where N is the integer

$$
173700820402235083057 .
$$

By a method of exclusion, using small prime moduli, the following binary representations of N were obtained:

$$
\begin{aligned}
& N=8807381316^{2}+9804634351^{2} \\
& N=8208625547^{2}+2^{3} \cdot 3^{3} \cdot 11^{2} \cdot 37^{2} \cdot 4243^{2} \cdot 7 \cdot 17 \cdot 19 \cdot 73 \\
& N=12839972408^{2}+7^{2} \cdot 11^{2} \cdot 13^{2} \cdot 3137^{2} \cdot 3 \cdot 19 \cdot 79 \cdot 199 \\
& N=2333417999^{2}+2^{4} \cdot 13^{2} \cdot 17^{2} \cdot 2707^{2} \cdot 3 \cdot 7 \cdot 79 \cdot 89 \cdot 199 \\
& N=10638310009^{2}+2^{10} \cdot 17^{2} \cdot 3853^{2} \cdot 3 \cdot 107 \cdot 167 \cdot 257 \\
& N=10579140907^{2}+2^{3} \cdot 3^{3} \cdot 13^{2} \cdot 3169^{2} \cdot 17 \cdot 23 \cdot 29 \cdot 89 \cdot 167 \\
& N=15870907595^{2}-2^{3} \cdot 3^{3} \cdot 17^{2} \cdot 37^{3} \cdot 3061^{2} \cdot 7 \cdot 13 \cdot 29 \\
& N=14740324637^{2}-2^{3} \cdot 7^{2} \cdot 23^{2} \cdot 73^{2} \cdot 2803^{2} \cdot 3 \cdot 7 \cdot 239 \\
& N=15129986183^{2}-2^{9} \cdot 7^{2} \cdot 3259^{2} \cdot 3 \cdot 37 \cdot 73 \cdot 107 \cdot 239 \\
& N=14996346199^{2}-2^{5} \cdot 3^{4} \cdot 11^{2} \cdot 17^{2} \cdot 2711^{2} \cdot 13 \cdot 23 \cdot 257
\end{aligned}
$$

If these ten relations are written as congruences in the form

$$
x^{2} \equiv D y^{2}(\bmod N)
$$

and then are multiplied together, there results the congruence

$$
A^{2} \equiv B^{2}(\bmod N)
$$

where

$$
\begin{aligned}
& A=3030767202419356872 \\
& B=8563882032.4313798848
\end{aligned}
$$

The greatest common divisor of $A+B$ and N was found to be 98618273953 , which yields the factorization

$$
N=1761345169 \cdot 98618273953
$$

The primality of both factors was verified on the SILLIAC computer at the University of Sydney.

This result supplements information previously published by R. M. Robinson [1].
19 Snape Street
Kingsford, Sydney
New South Wales, Australia

1. Raphael M. Robinson, "Some factorizations of numbers of the form $2^{n} \pm 1, " M T A C$, v. 11, 1957, p. 265-268.
